
CryptoTestament

Smart Contract Audit

CryptoTestament

Smart Contract Audit
V220314 Prepared for IOV • March 2022

TablE oF cOnTEntS

1. Executive Summary

2. Assessment

3. Update

4. Summary of Findings

5. Detailed Findings

TES-1 Griefing attack against testament execution

6. Disclaimer

© 2022 Coinspect 1

1. Executive Summary

In February 2022, liberdapps engaged Coinspect to perform a source code review of
CryptoTestament. The objective of the project was to evaluate the security of the smart
contracts.

The following issues were identified during the assessment:

High Risk Medium Risk Low Risk

1 0 0
Fixed

1
Fixed

0
Fixed

0

The high-risk vulnerability TES-1 is caused by lack of restrictions on the callers to the
receive function in CryptoTestament contract, allowing any address to perform a griefing
attack against the beneficiary and prevent the beneficiary from getting the funds after the
testator has died.

Update: As of commit 460835894f93c9f18c74fe498750641fe626f08d of March 9, 2022
the TES-1 issue has been fixed.

© 2022 Coinspect 2

https://coinspect.com

2. Assessment
The audit started on February 8, 2022 and was conducted on the repository at
https://github.com/liberdapps/CryptoTestament as of commit
0b7ce4cc37bfe11047581a46492b6aaa3f13894f of February 2, 2020 tagged as v1.0.0.

The scope of the assessment was limited to the contracts CryptoTestament and
CryptoTestamentService in file contracts/CryptoTestament.sol with sha256sum
3cf297c74268be24e2dacc0538357245a84dd9b13288291e7fa27cee796bfd96.

The CryptoTestamentService contract (prior to Coinspect’s audit) was deployed in the
RSK network at 0x9f386392833fa09b9064cc49f0acbb20d4d1937b and the dapp is
available at https://cryptotestament.io.

The system allows users (testators) to deposit RBTC in a CryptoTestament contract with a
designated beneficiary. The testator can deposit or withdraw funds at any time. The
testator must show proof of life periodically by calling a function of the testament contract.
If a specified amount of time passes since the testator last gave proof of life, the testator is
assumed dead and the testament contract can be executed, resulting in the funds being
transferred to the beneficiary.

The code is very clear and well written. The contracts are specified to be compiled with
Solidity compiler >= 0.8.7. The two contracts are self-contained and don’t depend on any
third-party code.

The repository doesn’t include any tests. In general it is advisable to develop tests together
with the contracts and ensure tests have full coverage of the contracts code.

The CryptoTestament contract has a number of storage variables that are set in the
constructor and never changed, and it is recommended to make those variables immutable.
These variables include: creationTimestamp, testatorAddress, serviceAddress and
serviceFeeRate. Also in the CryptoTestamentService contract the storage variable
serviceOwner can be marked immutable.

Both CryptoTestament and CryptoTestamentService contracts contain many require

statements without a reason string. In general it is recommended to always put a reason
string in require statements, to make it easier to test and debug the contracts or any
services interacting with them.

© 2022 Coinspect 3

https://github.com/liberdapps/CryptoTestament
https://explorer.rsk.co/address/0x9f386392833fa09b9064cc49f0acbb20d4d1937b
https://cryptotestament.io

The CryptoTestamanent contract implements the receive function. The testator can call
this function to deposit funds in the testament contract. Receiving funds is considered
“proof of life”, i.e. when the receive function is called the lastProofOfLifeTimestamp

variable is set to block.timestamp:

receive() external payable {

// Only allow deposits if testament is still locked.

require (status == TestamentStatus.LOCKED);

require (block.timestamp - lastProofOfLifeTimestamp <= proofOfLifeThreshold);

// Calculate and pay service fees.

uint256 serviceFee = (msg.value * serviceFeeRate) / 10000;

if (serviceFee > 0) {

(bool sent,) = serviceAddress.call{value: serviceFee}("");

require (sent, "Send failed.");

}

// Update proof of life.

lastProofOfLifeTimestamp = block.timestamp;

}

However, notice that the receive function can be called by any address, not just by the
testator address. This means that anyone can call the function to force an update of the
lastProofOfLifeTimestamp variable and prevent the beneficiary from getting the funds
after the testator has died. It is recommended to allow only the testator to call the receive

function (see TES-1).

© 2022 Coinspect 4

3. Update
Fixes were verified as of commit 460835894f93c9f18c74fe498750641fe626f08d of March
9, 2022. The final revision reviewed by Coinspect to verify fixes after the audit contains the
following Solidity source files with their respective sha256sum hashes:

81f3c877b52be60c057e38eb52d105427dec923490d4532e309121f23efa4e0b CryptoTestament.sol

4fd6092bdfa8b42f19d535c5ac69c4323b0b894717c699e58d5552eeabd04cd4 Migrations.sol

The high-risk issue TES-1 was fixed by allowing only the testator address to deposit funds
by calling the function receive. The update also includes other improvements following
Coinspect’s suggestions, such as the use of the immutable keyword for storage variables
that don’t change during the contract’s lifetime, and the inclusion of message strings in all
revert statements.

© 2022 Coinspect 5

4. Summary of Findings

Id Title Total Risk Fixed

TES-1 Griefing attack against testament execution High ✔

© 2022 Coinspect 6

5. Detailed Findings

TES-1 Griefing attack against testament execution

Total Risk

High

Impact
High

Location
CryptoTestament.sol

Fixed
✔

Likelihood
High

Description

The CryptoTestamanent contract implements the receive function. The testator can call this
function to deposit funds in the testament contract. Receiving funds is considered “proof of
life”, i.e. when the receive function is called the lastProofOfLifeTimestamp variable is set
to block.timestamp:

receive() external payable {

// Only allow deposits if testament is still locked.

require (status == TestamentStatus.LOCKED);

require (block.timestamp - lastProofOfLifeTimestamp <= proofOfLifeThreshold);

// Calculate and pay service fees.

uint256 serviceFee = (msg.value * serviceFeeRate) / 10000;

if (serviceFee > 0) {

(bool sent,) = serviceAddress.call{value: serviceFee}("");

require (sent, "Send failed.");

}

// Update proof of life.

lastProofOfLifeTimestamp = block.timestamp;

}

However, notice that the receive function can be called by any address, not just by the
testator address. This means that anyone can call the function to force an update of the
lastProofOfLifeTimestamp variable and prevent the testament to be executed and the
beneficiary from getting the funds after the testator has died.

© 2022 Coinspect 7

Recommendation

It is recommended to only allow the testator address to call the receive function in
CryptoTestamanet contract.

© 2022 Coinspect 8

6. Disclaimer
The information presented in this document is provided "as is" and without
warranty. The present security audit does not cover any off-chain systems or
frontends that communicate with the contracts, nor the general operational security
of the organization that developed the code.

© 2022 Coinspect 9

